Ligand source activities (1 row/activity)





Ligands Receptor Assay information Chemical information
Sel. page Common
name
GPCRdb ID #Vendors Reference
ligand
Fold selectivity
(Potency)
# tested GPCRs
(Potency)
Species p-value
(-log)
Type Activity
Relation
Activity
Value
Assay Type Assay Description Source Mol
weight
Rot
Bonds
H don H acc LogP Smiles DOI
1499 8872 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
3779 8872 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
536 8872 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
CHEMBL434 8872 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
DB01064 8872 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
53375056 149347 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 425 6 2 8 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C(C)(CO)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3891080 149347 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 425 6 2 8 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C(C)(CO)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422432 150049 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3O)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3896824 150049 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3O)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422430 150721 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 422 6 1 7 1.9 CNC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 10.1021/acs.jmedchem.0c00388
CHEMBL3902340 150721 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 422 6 1 7 1.9 CNC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 10.1021/acs.jmedchem.0c00388
57422428 154108 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 423 6 0 8 2.3 COC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 10.1021/acs.jmedchem.0c00388
CHEMBL3929225 154108 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 423 6 0 8 2.3 COC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 10.1021/acs.jmedchem.0c00388
57422442 158537 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 379 5 0 6 2.8 Cc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O 10.1021/acs.jmedchem.0c00388
CHEMBL3964777 158537 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 379 5 0 6 2.8 Cc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O 10.1021/acs.jmedchem.0c00388
57422443 158595 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3F)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3965292 158595 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3F)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422440 160269 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 6 0 7 2.5 COc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O 10.1021/acs.jmedchem.0c00388
CHEMBL3979660 160269 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 6 0 7 2.5 COc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O 10.1021/acs.jmedchem.0c00388
57944959 151747 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 359 5 0 7 1.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCO3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3910649 151747 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 359 5 0 7 1.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCO3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422472 151928 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 366 5 0 7 1.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccn3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3912134 151928 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 366 5 0 7 1.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccn3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57945017 153122 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 356 6 1 7 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1OC 10.1021/acs.jmedchem.0c00388
CHEMBL3921262 153122 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 356 6 1 7 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1OC 10.1021/acs.jmedchem.0c00388
57422420 180087 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 325 5 2 5 2.9 Cc1noc(C)c1Cn1cc(NC(=O)NCc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4526144 180087 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 325 5 2 5 2.9 Cc1noc(C)c1Cn1cc(NC(=O)NCc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
57422491 180277 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 351 5 0 5 3.0 Cc1noc(C)c1Cn1cc(N2CCN(Cc3ccccc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4530528 180277 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 351 5 0 5 3.0 Cc1noc(C)c1Cn1cc(N2CCN(Cc3ccccc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
155567505 182770 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 312 4 2 6 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccc2O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4588973 182770 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 312 4 2 6 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccc2O)cn1 10.1021/acs.jmedchem.0c00388
57945009 152518 0 None - 1 Human 6.0 pIC50 = 6.0 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cccnc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3916540 152518 0 None - 1 Human 6.0 pIC50 = 6.0 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cccnc2)cn1 10.1021/acs.jmedchem.0c00388
155565412 182342 0 None - 1 Human 6.0 pIC50 = 6.0 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 327 5 1 7 2.2 COc1ncccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 10.1021/acs.jmedchem.0c00388
CHEMBL4579065 182342 0 None - 1 Human 6.0 pIC50 = 6.0 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 327 5 1 7 2.2 COc1ncccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 10.1021/acs.jmedchem.0c00388
57422275 153941 0 None - 1 Human 5.8 pIC50 = 5.8 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 296 4 1 5 2.8 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3927851 153941 0 None - 1 Human 5.8 pIC50 = 5.8 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 296 4 1 5 2.8 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
57422287 151896 0 None - 1 Human 4.8 pIC50 = 4.8 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 314 4 1 7 1.8 Cc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n(C)n1 10.1021/acs.jmedchem.0c00388
CHEMBL3911861 151896 0 None - 1 Human 4.8 pIC50 = 4.8 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 314 4 1 7 1.8 Cc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n(C)n1 10.1021/acs.jmedchem.0c00388
57945020 151502 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 326 5 1 6 2.8 COc1ccccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 10.1021/acs.jmedchem.0c00388
CHEMBL3908801 151502 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 326 5 1 6 2.8 COc1ccccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 10.1021/acs.jmedchem.0c00388
12429 10226 5 None 1548 2 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 10.1021/acs.jmedchem.0c00388
57422431 10226 5 None 1548 2 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 10.1021/acs.jmedchem.0c00388
CHEMBL3924866 10226 5 None 1548 2 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 10.1021/acs.jmedchem.0c00388
53374961 154620 0 None - 1 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C)N(Cc3cccc(O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3933031 154620 0 None - 1 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C)N(Cc3cccc(O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
53373641 158125 0 None - 1 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 407 5 1 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CC3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3961116 158125 0 None - 1 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 407 5 1 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CC3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
53375053 166859 0 None - 1 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H](C)N(Cc3cccc(O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4108527 166859 0 None - 1 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H](C)N(Cc3cccc(O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422411 150291 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 322 3 0 6 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)c3ccccc3C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3898835 150291 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 322 3 0 6 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)c3ccccc3C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422267 152625 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 340 4 1 7 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCO3)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3917282 152625 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 340 4 1 7 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCO3)cn1 10.1021/acs.jmedchem.0c00388
57944953 154488 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 365 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3932026 154488 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 365 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422494 179632 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 383 5 0 8 1.5 Cc1cc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)n(C)n1 10.1021/acs.jmedchem.0c00388
CHEMBL4514970 179632 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 383 5 0 8 1.5 Cc1cc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)n(C)n1 10.1021/acs.jmedchem.0c00388
57422429 154719 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 409 6 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C(=O)O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3933783 154719 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 409 6 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C(=O)O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
155516501 176874 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 311 4 2 5 3.2 Cc1noc(C)c1Cn1cc(NC(=O)Nc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4443466 176874 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 311 4 2 5 3.2 Cc1noc(C)c1Cn1cc(NC(=O)Nc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
57944981 178828 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 379 5 0 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)C(=O)N(Cc3ccccc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4471870 178828 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 379 5 0 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)C(=O)N(Cc3ccccc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57944963 151817 0 None - 1 Human 5.6 pIC50 = 5.6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccn2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3911209 151817 0 None - 1 Human 5.6 pIC50 = 5.6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccn2)cn1 10.1021/acs.jmedchem.0c00388
3760997 177191 1 None - 1 Human 5.6 pIC50 = 5.6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 357 6 1 7 3.3 CCSc1ncccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 10.1021/acs.jmedchem.0c00388
CHEMBL4448191 177191 1 None - 1 Human 5.6 pIC50 = 5.6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 357 6 1 7 3.3 CCSc1ncccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 10.1021/acs.jmedchem.0c00388
57944902 150651 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 371 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCCC3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3901756 150651 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 371 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCCC3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422268 156124 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 356 6 1 7 2.8 COc1ccc(OC)c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 10.1021/acs.jmedchem.0c00388
CHEMBL3945185 156124 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 356 6 1 7 2.8 COc1ccc(OC)c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 10.1021/acs.jmedchem.0c00388
57422454 156829 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 6 1 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CO)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3950626 156829 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 6 1 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CO)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
155522505 177496 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 335 4 2 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3[nH]ccc3c2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4452065 177496 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 335 4 2 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3[nH]ccc3c2)cn1 10.1021/acs.jmedchem.0c00388
57422301 159353 0 None - 1 Human 5.5 pIC50 = 5.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 337 4 1 7 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3ocnc3c2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3971823 159353 0 None - 1 Human 5.5 pIC50 = 5.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 337 4 1 7 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3ocnc3c2)cn1 10.1021/acs.jmedchem.0c00388
53375054 152388 0 None - 1 Human 7.4 pIC50 = 7.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 411 6 2 8 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](CO)N(Cc3cccc(O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3915586 152388 0 None - 1 Human 7.4 pIC50 = 7.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 411 6 2 8 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](CO)N(Cc3cccc(O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422433 156521 0 None - 1 Human 7.4 pIC50 = 7.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(O)cc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3948082 156521 0 None - 1 Human 7.4 pIC50 = 7.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(O)cc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
53374960 159134 0 None - 1 Human 7.4 pIC50 = 7.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 421 5 1 7 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CCC3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3970005 159134 0 None - 1 Human 7.4 pIC50 = 7.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 421 5 1 7 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CCC3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57944907 149441 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 354 4 1 7 2.6 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCCO3)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3891877 149441 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 354 4 1 7 2.6 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCCO3)cn1 10.1021/acs.jmedchem.0c00388
57944900 152818 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 324 6 1 5 3.1 Cc1noc(C)c1Cn1cc(NC(=O)CCc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3918801 152818 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 324 6 1 5 3.1 Cc1noc(C)c1Cn1cc(NC(=O)CCc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
57944914 155606 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 384 5 0 8 2.1 Cc1noc(C)c1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O 10.1021/acs.jmedchem.0c00388
CHEMBL3941028 155606 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 384 5 0 8 2.1 Cc1noc(C)c1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O 10.1021/acs.jmedchem.0c00388
155533921 178658 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 312 4 2 6 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(O)c2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4469393 178658 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 312 4 2 6 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(O)c2)cn1 10.1021/acs.jmedchem.0c00388
155528571 178123 0 None - 1 Human 5.4 pIC50 = 5.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 332 5 1 6 2.3 Cc1noc(C)c1Cn1cc(NS(=O)(=O)c2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4461460 178123 0 None - 1 Human 5.4 pIC50 = 5.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 332 5 1 6 2.3 Cc1noc(C)c1Cn1cc(NS(=O)(=O)c2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
57450323 150785 0 None - 1 Human 5.3 pIC50 = 5.3 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccncc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3902844 150785 0 None - 1 Human 5.3 pIC50 = 5.3 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccncc2)cn1 10.1021/acs.jmedchem.0c00388
57422441 150416 0 None - 1 Human 6.3 pIC50 = 6.3 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3C#N)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3899833 150416 0 None - 1 Human 6.3 pIC50 = 6.3 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3C#N)C2=O)cn1 10.1021/acs.jmedchem.0c00388
155544814 181809 0 None - 1 Human 6.3 pIC50 = 6.3 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 312 4 2 6 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc(O)cc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4567380 181809 0 None - 1 Human 6.3 pIC50 = 6.3 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 312 4 2 6 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc(O)cc2)cn1 10.1021/acs.jmedchem.0c00388
12430 10227 3 None - 1 Human 7.2 pIC50 = 7.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C 10.1021/acs.jmedchem.0c00388
53374958 10227 3 None - 1 Human 7.2 pIC50 = 7.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C 10.1021/acs.jmedchem.0c00388
CHEMBL3907822 10227 3 None - 1 Human 7.2 pIC50 = 7.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C 10.1021/acs.jmedchem.0c00388
57945012 150404 0 None - 1 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 326 5 1 6 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1 10.1021/acs.jmedchem.0c00388
CHEMBL3899757 150404 0 None - 1 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 326 5 1 6 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1 10.1021/acs.jmedchem.0c00388
25206166 155464 0 None - 1 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 326 5 1 6 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 10.1021/acs.jmedchem.0c00388
CHEMBL3939850 155464 0 None - 1 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 326 5 1 6 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 10.1021/acs.jmedchem.0c00388
155518895 177111 0 None - 1 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 327 5 1 7 2.2 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n1 10.1021/acs.jmedchem.0c00388
CHEMBL4447100 177111 0 None - 1 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 327 5 1 7 2.2 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n1 10.1021/acs.jmedchem.0c00388
57944991 149303 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 338 7 1 5 3.5 Cc1noc(C)c1Cn1cc(NC(=O)CCCc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3890731 149303 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 338 7 1 5 3.5 Cc1noc(C)c1Cn1cc(NC(=O)CCCc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
57422266 151446 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 310 5 1 5 2.7 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3908324 151446 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 310 5 1 5 2.7 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
155524757 177784 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 327 5 1 7 2.2 COc1cncc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 10.1021/acs.jmedchem.0c00388
CHEMBL4456506 177784 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 327 5 1 7 2.2 COc1cncc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 10.1021/acs.jmedchem.0c00388
57422424 154247 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 275 3 1 6 0.6 Cc1noc(C)c1Cn1cc(N2C(=O)CNC2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3930312 154247 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 275 3 1 6 0.6 Cc1noc(C)c1Cn1cc(N2C(=O)CNC2=O)cn1 10.1021/acs.jmedchem.0c00388
57422413 151819 0 None - 1 Human 5.1 pIC50 = 5.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 308 3 0 5 2.7 Cc1noc(C)c1Cn1cc(N2Cc3ccccc3C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3911225 151819 0 None - 1 Human 5.1 pIC50 = 5.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 308 3 0 5 2.7 Cc1noc(C)c1Cn1cc(N2Cc3ccccc3C2=O)cn1 10.1021/acs.jmedchem.0c00388
1499 8872 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
3779 8872 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
536 8872 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
CHEMBL434 8872 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
DB01064 8872 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
5318517 7204 0 None -8 3 Human 4.0 pEC50 = 4.0 Functional
UnclassifiedUnclassified
Guide to Pharmacology 350 3 3 5 2.0 OC[C@]1(C)[C@H](O)CC[C@@]2([C@@H]1CCC(=C)[C@H]2C/C=C/1\[C@H](O)COC1=O)C 32330040
9675 7204 0 None -8 3 Human 4.0 pEC50 = 4.0 Functional
UnclassifiedUnclassified
Guide to Pharmacology 350 3 3 5 2.0 OC[C@]1(C)[C@H](O)CC[C@@]2([C@@H]1CCC(=C)[C@H]2C/C=C/1\[C@H](O)COC1=O)C 32330040
11027 9694 0 None - 1 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 540 9 6 13 -0.6 OC[C@H]1O[C@@H](O[C@@H]2OC=C([C@H](/C/2=C\C)CC(=O)OCCc2ccc(c(c2)O)O)C(=O)OC)[C@@H]([C@H]([C@@H]1O)O)O 34785711
5281544 9694 0 None - 1 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 540 9 6 13 -0.6 OC[C@H]1O[C@@H](O[C@@H]2OC=C([C@H](/C/2=C\C)CC(=O)OCCc2ccc(c(c2)O)O)C(=O)OC)[C@@H]([C@H]([C@@H]1O)O)O 34785711
CHEMBL1911053 9694 0 None - 1 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 540 9 6 13 -0.6 OC[C@H]1O[C@@H](O[C@@H]2OC=C([C@H](/C/2=C\C)CC(=O)OCCc2ccc(c(c2)O)O)C(=O)OC)[C@@H]([C@H]([C@@H]1O)O)O 34785711
12430 10227 3 None - 1 Human 7.2 pIC50 = 7.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C 32330040
53374958 10227 3 None - 1 Human 7.2 pIC50 = 7.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C 32330040
CHEMBL3907822 10227 3 None - 1 Human 7.2 pIC50 = 7.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C 32330040
12429 10226 5 None 1548 2 Human 7.7 pIC50 = 7.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 32330040
57422431 10226 5 None 1548 2 Human 7.7 pIC50 = 7.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 32330040
CHEMBL3924866 10226 5 None 1548 2 Human 7.7 pIC50 = 7.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 32330040




Ligands Receptor Assay information Chemical information
Sel. page Common
name
GPCRdb ID #Vendors Reference
ligand
Fold selectivity
(Affinity)
# tested GPCRs
(Affinity)
Species p-value
(-log)
Type Activity
Relation
Activity
Value
Assay Type Assay Description Source Mol
weight
Rot
Bonds
H don H acc LogP Smiles DOI
53374959 150285 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 2 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cc(O)cc(O)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3898803 150285 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 2 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cc(O)cc(O)c3)C(C)(C)C2=O)cn1 nan
53373636 153478 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C)N(Cc3ccccc3)C2=O)cn1 nan
CHEMBL3923956 153478 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C)N(Cc3ccccc3)C2=O)cn1 nan
53373639 155412 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 5 1 7 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(F)c(O)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3939399 155412 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 5 1 7 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(F)c(O)c3)C(C)(C)C2=O)cn1 nan
57944945 156781 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 412 6 0 9 1.6 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(CCc3ccc(F)cc3)c2=O)cn1 nan
CHEMBL3950223 156781 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 412 6 0 9 1.6 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(CCc3ccc(F)cc3)c2=O)cn1 nan
57944929 159910 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 6 0 6 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccc(F)cc3)C2=O)cn1 nan
CHEMBL3976506 159910 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 6 0 6 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccc(F)cc3)C2=O)cn1 nan
53373844 167388 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H](C)N(Cc3ccccc3)C2=O)cn1 nan
CHEMBL4112934 167388 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H](C)N(Cc3ccccc3)C2=O)cn1 nan
57944947 149593 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 388 4 1 7 3.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cc(Cl)c3c(c2)OCCO3)cn1 nan
CHEMBL3892982 149593 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 388 4 1 7 3.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cc(Cl)c3c(c2)OCCO3)cn1 nan
53375154 149764 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.6 Cc1ccccc1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3894430 149764 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.6 Cc1ccccc1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
53374077 150243 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3c(F)cccc3F)C(C)(C)C2=O)cn1 nan
CHEMBL3898431 150243 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3c(F)cccc3F)C(C)(C)C2=O)cn1 nan
57422439 152166 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 9 0 8 2.5 COCCOc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
CHEMBL3913870 152166 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 9 0 8 2.5 COCCOc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
57422434 153452 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 6 1 8 2.2 COc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1O nan
CHEMBL3923778 153452 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 6 1 8 2.2 COc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1O nan
53373847 153778 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 2 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3O)C(C)(C)C2=O)cn1 nan
CHEMBL3926477 153778 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 2 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3O)C(C)(C)C2=O)cn1 nan
57944964 158230 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 388 4 1 7 3.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cc3c(cc2Cl)OCCO3)cn1 nan
CHEMBL3961992 158230 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 388 4 1 7 3.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cc3c(cc2Cl)OCCO3)cn1 nan
57422442 158537 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.8 Cc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
CHEMBL3964777 158537 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.8 Cc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
57422307 150862 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 4 2 6 3.0 Cc1nc2cc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)ccc2[nH]1 nan
CHEMBL3903394 150862 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 4 2 6 3.0 Cc1nc2cc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)ccc2[nH]1 nan
57422447 152848 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C#N)c3)C2=O)cn1 nan
CHEMBL3919109 152848 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C#N)c3)C2=O)cn1 nan
57422476 153123 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 331 5 1 6 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC(C)C)C2=O)cn1 nan
CHEMBL3921270 153123 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 331 5 1 6 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC(C)C)C2=O)cn1 nan
57944923 160764 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 426 7 0 9 1.9 COc1ccnc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1OC nan
CHEMBL3983912 160764 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 426 7 0 9 1.9 COc1ccnc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1OC nan
57945009 152518 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cccnc2)cn1 nan
CHEMBL3916540 152518 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cccnc2)cn1 nan
57422322 156881 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 341 5 2 5 3.0 Cc1noc(C)c1Cn1cc(NC(=S)NCc2ccccc2)cn1 nan
CHEMBL3951005 156881 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 341 5 2 5 3.0 Cc1noc(C)c1Cn1cc(NC(=S)NCc2ccccc2)cn1 nan
53373961 155690 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 1 7 2.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(CO)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3941755 155690 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 1 7 2.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(CO)c3)C(C)(C)C2=O)cn1 nan
53373744 157756 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 7 3.3 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
CHEMBL3958274 157756 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 7 3.3 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
53374186 160179 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 6 3.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3F)C(C)(C)C2=O)cn1 nan
CHEMBL3978855 160179 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 6 3.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3F)C(C)(C)C2=O)cn1 nan
57462265 166730 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 6 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)N[C@H](Cc3ccccc3)C2=O)cn1 nan
CHEMBL4107363 166730 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 6 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)N[C@H](Cc3ccccc3)C2=O)cn1 nan
57422477 159615 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 317 4 1 6 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)NC(C(C)C)C2=O)cn1 nan
CHEMBL3974057 159615 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 317 4 1 6 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)NC(C(C)C)C2=O)cn1 nan
57422413 151819 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 308 3 0 5 2.7 Cc1noc(C)c1Cn1cc(N2Cc3ccccc3C2=O)cn1 nan
CHEMBL3911225 151819 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 308 3 0 5 2.7 Cc1noc(C)c1Cn1cc(N2Cc3ccccc3C2=O)cn1 nan
57944941 157348 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 7 1 7 2.7 COc1ccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1OC nan
CHEMBL3955012 157348 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 7 1 7 2.7 COc1ccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1OC nan
57422423 160600 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 1 9 0.6 Cc1noc(C)c1Cn1cc(-n2c(=O)[nH]c(=O)n(Cc3ccccc3)c2=O)cn1 nan
CHEMBL3982487 160600 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 1 9 0.6 Cc1noc(C)c1Cn1cc(-n2c(=O)[nH]c(=O)n(Cc3ccccc3)c2=O)cn1 nan
57422281 160225 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.7 COc1ccccc1CC(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3979312 160225 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.7 COc1ccccc1CC(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
57462264 150311 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 6 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)N[C@@H](Cc3ccccc3)C2=O)cn1 nan
CHEMBL3898921 150311 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 6 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)N[C@@H](Cc3ccccc3)C2=O)cn1 nan
53374187 152049 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.6 Cc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3912916 152049 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.6 Cc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
53373640 153129 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.3 COc1ccc(CCN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
CHEMBL3921288 153129 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.3 COc1ccc(CCN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
53374078 155592 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 2 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(O)c(O)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3940913 155592 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 2 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(O)c(O)c3)C(C)(C)C2=O)cn1 nan
53373848 158530 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 6 3.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(F)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3964698 158530 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 6 3.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(F)c3)C(C)(C)C2=O)cn1 nan
57944908 156721 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 7 0 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CN(C)C)c3)C2=O)cn1 nan
CHEMBL3949748 156721 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 7 0 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CN(C)C)c3)C2=O)cn1 nan
118696129 157413 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 4 1 5 3.3 Cc1noc(C)c1Cn1cnc(NC(=O)c2ccc3c(c2)CCC3)c1 nan
CHEMBL3955448 157413 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 4 1 5 3.3 Cc1noc(C)c1Cn1cnc(NC(=O)c2ccc3c(c2)CCC3)c1 nan
53374575 153927 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 0 6 3.9 Cc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1C nan
CHEMBL3927750 153927 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 0 6 3.9 Cc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1C nan
3326313 150456 1 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 396 6 1 9 2.2 COC(=O)c1sccc1S(=O)(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3900125 150456 1 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 396 6 1 9 2.2 COC(=O)c1sccc1S(=O)(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
57944970 152260 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 492 11 0 9 4.8 COc1cccc(CN(Cc2cccc(OC)c2OC)c2cnn(Cc3c(C)noc3C)c2)c1OC nan
CHEMBL3914559 152260 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 492 11 0 9 4.8 COc1cccc(CN(Cc2cccc(OC)c2OC)c2cnn(Cc3c(C)noc3C)c2)c1OC nan
57944922 157925 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 6 0 6 3.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3cccc4ccccc34)C2=O)cn1 nan
CHEMBL3959519 157925 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 6 0 6 3.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3cccc4ccccc34)C2=O)cn1 nan
53375056 149347 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 2 8 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C(C)(CO)C2=O)cn1 nan
CHEMBL3891080 149347 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 2 8 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C(C)(CO)C2=O)cn1 nan
53373849 150676 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 467 8 0 8 3.3 COc1ccc(CCN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1OC nan
CHEMBL3901905 150676 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 467 8 0 8 3.3 COc1ccc(CCN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1OC nan
53373745 152782 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.4 COCc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3918518 152782 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.4 COCc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
57944926 153268 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 6 0 6 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccccc3F)C2=O)cn1 nan
CHEMBL3922377 153268 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 6 0 6 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccccc3F)C2=O)cn1 nan
57422473 153751 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 1 7 2.2 COc1cccc(CC2NC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3926266 153751 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 1 7 2.2 COc1cccc(CC2NC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
57422468 156274 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 7 2 7 1.7 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC(=O)NCc3ccccc3)C2=O)cn1 nan
CHEMBL3946372 156274 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 7 2 7 1.7 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC(=O)NCc3ccccc3)C2=O)cn1 nan
57944965 156687 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 376 4 1 7 3.1 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OC(F)(F)O3)cn1 nan
CHEMBL3949370 156687 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 376 4 1 7 3.1 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OC(F)(F)O3)cn1 nan
57422462 160787 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 289 3 1 6 1.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(C)C2=O)cn1 nan
CHEMBL3984079 160787 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 289 3 1 6 1.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(C)C2=O)cn1 nan
57944901 149715 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 285 4 2 5 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2cc[nH]c2)cn1 nan
CHEMBL3894018 149715 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 285 4 2 5 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2cc[nH]c2)cn1 nan
57422316 150390 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 357 5 1 7 2.2 Cc1noc(C)c1Cn1cc(NS(=O)(=O)c2ccccc2C#N)cn1 nan
CHEMBL3899608 150390 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 357 5 1 7 2.2 Cc1noc(C)c1Cn1cc(NS(=O)(=O)c2ccccc2C#N)cn1 nan
57944940 150499 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 7 0 7 2.6 COc1ccccc1CCN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
CHEMBL3900543 150499 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 7 0 7 2.6 COc1ccccc1CCN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
57422430 150721 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 6 1 7 1.9 CNC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3902340 150721 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 6 1 7 1.9 CNC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
57422489 153594 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 6 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccccc3)C2=O)cn1 nan
CHEMBL3924802 153594 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 6 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccccc3)C2=O)cn1 nan
57944959 151747 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 359 5 0 7 1.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCO3)C2=O)cn1 nan
CHEMBL3910649 151747 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 359 5 0 7 1.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCO3)C2=O)cn1 nan
57422306 160136 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 4 1 6 3.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3occc3c2)cn1 nan
CHEMBL3978470 160136 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 4 1 6 3.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3occc3c2)cn1 nan
57944912 156336 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)C(Cc3ccccc3)N(C)C2=O)cn1 nan
CHEMBL3946741 156336 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)C(Cc3ccccc3)N(C)C2=O)cn1 nan
53373740 156909 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(C(C)c3ccccc3)C(C)(C)C2=O)cn1 nan
CHEMBL3951285 156909 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(C(C)c3ccccc3)C(C)(C)C2=O)cn1 nan
53374075 159079 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3cccc(F)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3969518 159079 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3cccc(F)c3)C(C)(C)C2=O)cn1 nan
57422414 160126 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 337 3 1 7 1.5 Cc1noc(C)c1Cn1cc(-n2c(=O)[nH]c3ccccc3c2=O)cn1 nan
CHEMBL3978413 160126 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 337 3 1 7 1.5 Cc1noc(C)c1Cn1cc(-n2c(=O)[nH]c3ccccc3c2=O)cn1 nan
53374770 157048 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 461 5 0 6 4.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(C(F)(F)F)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3952550 157048 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 461 5 0 6 4.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(C(F)(F)F)c3)C(C)(C)C2=O)cn1 nan
57944980 157417 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 314 4 1 5 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc(F)cc2)cn1 nan
CHEMBL3955459 157417 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 314 4 1 5 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc(F)cc2)cn1 nan
53374576 154418 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 0 6 3.9 Cc1cccc(C)c1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3931441 154418 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 0 6 3.9 Cc1cccc(C)c1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
57944968 153737 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 7 0 7 2.6 COc1cccc(CCN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3926104 153737 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 7 0 7 2.6 COc1cccc(CCN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
53373741 153822 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 8 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cc(C)n(C)n3)C(C)(C)C2=O)cn1 nan
CHEMBL3926891 153822 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 8 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cc(C)n(C)n3)C(C)(C)C2=O)cn1 nan
57422317 159277 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 345 4 2 5 3.5 Cc1noc(C)c1Cn1cc(NC(=S)Nc2ccccc2F)cn1 nan
CHEMBL3971272 159277 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 345 4 2 5 3.5 Cc1noc(C)c1Cn1cc(NC(=S)Nc2ccccc2F)cn1 nan
57944973 157338 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 392 7 1 8 2.4 COc1ccc(OC)c(S(=O)(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3954896 157338 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 392 7 1 8 2.4 COc1ccc(OC)c(S(=O)(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57422416 157482 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 0 5 3.4 Cc1noc(C)c1Cn1cc(N2CCCN(Cc3ccccc3)C2=O)cn1 nan
CHEMBL3956013 157482 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 0 5 3.4 Cc1noc(C)c1Cn1cc(N2CCCN(Cc3ccccc3)C2=O)cn1 nan
57422466 154841 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 7 1 6 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CCCc3ccccc3)C2=O)cn1 nan
CHEMBL3934773 154841 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 7 1 6 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CCCc3ccccc3)C2=O)cn1 nan
57422268 156124 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1ccc(OC)c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3945185 156124 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1ccc(OC)c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57422469 150787 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 452 8 2 8 1.7 COc1cccc(CNC(=O)CC2NC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3902853 150787 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 452 8 2 8 1.7 COc1cccc(CNC(=O)CC2NC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
57422424 154247 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 275 3 1 6 0.6 Cc1noc(C)c1Cn1cc(N2C(=O)CNC2=O)cn1 nan
CHEMBL3930312 154247 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 275 3 1 6 0.6 Cc1noc(C)c1Cn1cc(N2C(=O)CNC2=O)cn1 nan
57422305 157313 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 348 4 1 7 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc3nccnc23)cn1 nan
CHEMBL3954644 157313 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 348 4 1 7 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc3nccnc23)cn1 nan
57422411 150291 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 322 3 0 6 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)c3ccccc3C2=O)cn1 nan
CHEMBL3898835 150291 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 322 3 0 6 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)c3ccccc3C2=O)cn1 nan
53375152 156159 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 6 0 7 3.4 COc1cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)ccc1F nan
CHEMBL3945434 156159 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 6 0 7 3.4 COc1cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)ccc1F nan
57422463 160467 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 6 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)NC(Cc3ccccc3)C2=O)cn1 nan
CHEMBL3981376 160467 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 6 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)NC(Cc3ccccc3)C2=O)cn1 nan
57422429 154719 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 6 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C(=O)O)c3)C2=O)cn1 nan
CHEMBL3933783 154719 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 6 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C(=O)O)c3)C2=O)cn1 nan
57422287 151896 0 None - 0 Human 4.7 pIC50 = 4.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 314 4 1 7 1.8 Cc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n(C)n1 nan
CHEMBL3911861 151896 0 None - 0 Human 4.7 pIC50 = 4.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 314 4 1 7 1.8 Cc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n(C)n1 nan
57944967 157183 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.7 COc1cccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3953709 157183 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.7 COc1cccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57422458 159625 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 328 5 1 8 1.6 COc1cccc(C(=O)Nc2nnn(Cc3c(C)noc3C)n2)c1 nan
CHEMBL3974121 159625 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 328 5 1 8 1.6 COc1cccc(C(=O)Nc2nnn(Cc3c(C)noc3C)n2)c1 nan
57422458 159625 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 328 5 1 8 1.6 COc1cccc(C(=O)Nc2nnn(Cc3c(C)noc3C)n2)c1 nan
CHEMBL3974121 159625 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 328 5 1 8 1.6 COc1cccc(C(=O)Nc2nnn(Cc3c(C)noc3C)n2)c1 nan
53374771 154446 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 0 6 3.9 Cc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c(C)c1 nan
CHEMBL3931725 154446 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 0 6 3.9 Cc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c(C)c1 nan
53374188 149247 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 424 6 0 8 2.7 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)nc1 nan
CHEMBL3890303 149247 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 424 6 0 8 2.7 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)nc1 nan
53374873 153839 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 0 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccncc3)C(C)(C)C2=O)cn1 nan
CHEMBL3927031 153839 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 0 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccncc3)C(C)(C)C2=O)cn1 nan
57944961 159746 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 290 6 1 5 2.9 CCC(C)CC(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3975179 159746 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 290 6 1 5 2.9 CCC(C)CC(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
57944976 158386 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 311 4 1 6 2.5 Cc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n1 nan
CHEMBL3963530 158386 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 311 4 1 6 2.5 Cc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n1 nan
57422455 149242 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 380 5 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3N)C2=O)cn1 nan
CHEMBL3890262 149242 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 380 5 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3N)C2=O)cn1 nan
53375055 150708 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 1 8 2.8 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C23CC3)cc1O nan
CHEMBL3902192 150708 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 1 8 2.8 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C23CC3)cc1O nan
53374961 154620 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C)N(Cc3cccc(O)c3)C2=O)cn1 nan
CHEMBL3933031 154620 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C)N(Cc3cccc(O)c3)C2=O)cn1 nan
57422482 154946 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 380 5 0 9 1.2 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(Cc3ccccc3)c2=O)cn1 nan
CHEMBL3935648 154946 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 380 5 0 9 1.2 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(Cc3ccccc3)c2=O)cn1 nan
53375057 155368 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 7 0 8 3.1 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C23CC3)cc1OC nan
CHEMBL3939063 155368 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 7 0 8 3.1 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C23CC3)cc1OC nan
57944904 155441 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 7 0 10 1.3 COCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
CHEMBL3939695 155441 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 7 0 10 1.3 COCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
53373638 156732 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 6 1 8 3.0 COc1cc(O)cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3949830 156732 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 6 1 8 3.0 COc1cc(O)cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
53373641 158125 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 1 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CC3)C2=O)cn1 nan
CHEMBL3961116 158125 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 1 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CC3)C2=O)cn1 nan
53374870 158447 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 3 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H]3Cc4ccc(O)cc4CN3C2=O)cn1 nan
CHEMBL3964034 158447 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 3 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H]3Cc4ccc(O)cc4CN3C2=O)cn1 nan
57944930 160211 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)C(C)N(Cc3ccccc3)C2=O)cn1 nan
CHEMBL3979194 160211 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)C(C)N(Cc3ccccc3)C2=O)cn1 nan
53375053 166859 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H](C)N(Cc3cccc(O)c3)C2=O)cn1 nan
CHEMBL4108527 166859 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H](C)N(Cc3cccc(O)c3)C2=O)cn1 nan
3170441 110681 2 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3092287 110681 2 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57422267 152625 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 4 1 7 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCO3)cn1 nan
CHEMBL3917282 152625 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 4 1 7 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCO3)cn1 nan
53374378 153331 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1ccc(OC)c(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3922801 153331 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1ccc(OC)c(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
57422446 153626 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 6 0 7 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C=O)c3)C2=O)cn1 nan
CHEMBL3925139 153626 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 6 0 7 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C=O)c3)C2=O)cn1 nan
57422448 153953 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.8 Cc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3927927 153953 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.8 Cc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
57944950 155389 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 413 6 0 6 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3cccc(Cl)c3)C2=O)cn1 nan
CHEMBL3939226 155389 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 413 6 0 6 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3cccc(Cl)c3)C2=O)cn1 nan
53374189 156814 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3ccccc3F)C(C)(C)C2=O)cn1 nan
CHEMBL3950520 156814 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3ccccc3F)C(C)(C)C2=O)cn1 nan
57422444 157308 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 433 5 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3C(F)(F)F)C2=O)cn1 nan
CHEMBL3954622 157308 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 433 5 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3C(F)(F)F)C2=O)cn1 nan
57944982 157657 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 321 4 1 6 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(C#N)c2)cn1 nan
CHEMBL3957404 157657 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 321 4 1 6 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(C#N)c2)cn1 nan
53374577 152837 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 480 9 0 8 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(OCCN(C)C)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3919010 152837 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 480 9 0 8 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(OCCN(C)C)c3)C(C)(C)C2=O)cn1 nan
4341332 154080 1 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 414 5 1 8 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2scc(S(C)(=O)=O)c2Cl)cn1 nan
CHEMBL3928980 154080 1 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 414 5 1 8 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2scc(S(C)(=O)=O)c2Cl)cn1 nan
57945010 160716 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 6 1 6 3.0 COC(C)(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
CHEMBL3983490 160716 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 6 1 6 3.0 COC(C)(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
57422304 161102 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 4 1 6 3.8 Cc1cc2cc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)ccc2o1 nan
CHEMBL3986724 161102 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 4 1 6 3.8 Cc1cc2cc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)ccc2o1 nan
57422294 159209 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 0 5 3.3 Cc1noc(C)c1Cn1cc(N(C)C(=O)C(C)c2ccccc2)cn1 nan
CHEMBL3970721 159209 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 0 5 3.3 Cc1noc(C)c1Cn1cc(N(C)C(=O)C(C)c2ccccc2)cn1 nan
57944955 149788 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 346 5 1 6 2.6 Cc1ccccc1S(=O)(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3894702 149788 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 346 5 1 6 2.6 Cc1ccccc1S(=O)(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
57945021 150975 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 3.2 CCOc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3904300 150975 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 3.2 CCOc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
53374190 151029 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 6 0 8 3.1 COC(=O)c1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3904739 151029 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 6 0 8 3.1 COC(=O)c1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
53373962 155348 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 0 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccnc3)C(C)(C)C2=O)cn1 nan
CHEMBL3938926 155348 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 0 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccnc3)C(C)(C)C2=O)cn1 nan
57422465 160270 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 6 1 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CCc3ccccc3)C2=O)cn1 nan
CHEMBL3979675 160270 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 6 1 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CCc3ccccc3)C2=O)cn1 nan
57422303 150912 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 5 1 6 3.1 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)ccc1C nan
CHEMBL3903830 150912 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 5 1 6 3.1 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)ccc1C nan
57422291 152096 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 302 4 1 5 3.1 Cc1noc(C)c1Cn1cc(NC(=O)C2CCCCC2)cn1 nan
CHEMBL3913309 152096 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 302 4 1 5 3.1 Cc1noc(C)c1Cn1cc(NC(=O)C2CCCCC2)cn1 nan
57422302 160075 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 358 5 3 8 2.2 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(O)c1O nan
CHEMBL3977925 160075 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 358 5 3 8 2.2 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(O)c1O nan
57422325 153472 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 349 5 1 7 2.6 Cc1noc(C)c1Cn1cc(C(=O)NCc2cccs2)sc1=O nan
CHEMBL3923914 153472 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 349 5 1 7 2.6 Cc1noc(C)c1Cn1cc(C(=O)NCc2cccs2)sc1=O nan
53373958 153576 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 8 2.3 Cc1cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)n(C)n1 nan
CHEMBL3924674 153576 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 8 2.3 Cc1cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)n(C)n1 nan
53374281 153884 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 6 0 8 3.1 COC(=O)c1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
CHEMBL3927388 153884 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 6 0 8 3.1 COC(=O)c1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
57422488 154169 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 396 6 0 8 1.9 COc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)n1 nan
CHEMBL3929698 154169 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 396 6 0 8 1.9 COc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)n1 nan
53374379 160163 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 6 0 6 3.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3ccccc3)C(C)(C)C2=O)cn1 nan
CHEMBL3978725 160163 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 6 0 6 3.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3ccccc3)C(C)(C)C2=O)cn1 nan
53374773 156202 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(C(=O)O)cc3)C(C)(C)C2=O)cn1 nan
CHEMBL3945807 156202 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(C(=O)O)cc3)C(C)(C)C2=O)cn1 nan
57422323 158109 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 352 4 2 6 3.2 Cc1noc(C)c1Cn1cc(NC(=S)Nc2ccccc2C#N)cn1 nan
CHEMBL3961023 158109 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 352 4 2 6 3.2 Cc1noc(C)c1Cn1cc(NC(=S)Nc2ccccc2C#N)cn1 nan
53374282 153468 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cc(F)ccc3F)C(C)(C)C2=O)cn1 nan
CHEMBL3923880 153468 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cc(F)ccc3F)C(C)(C)C2=O)cn1 nan
53374380 158804 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.3 COc1ccccc1CCN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3967072 158804 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.3 COc1ccccc1CCN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
57422324 156190 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 327 4 2 5 3.3 Cc1noc(C)c1Cn1cc(NC(=S)Nc2ccccc2)cn1 nan
CHEMBL3945727 156190 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 327 4 2 5 3.3 Cc1noc(C)c1Cn1cc(NC(=S)Nc2ccccc2)cn1 nan
53374381 149509 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.3 COc1cccc(CCN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3892375 149509 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.3 COc1cccc(CCN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
57944977 152868 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 413 6 0 6 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccccc3Cl)C2=O)cn1 nan
CHEMBL3919276 152868 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 413 6 0 6 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccccc3Cl)C2=O)cn1 nan
57422269 160624 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 5 1 5 3.2 Cc1noc(C)c1Cn1cc(NC(=O)C2(c3ccccc3)CC2)cn1 nan
CHEMBL3982707 160624 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 5 1 5 3.2 Cc1noc(C)c1Cn1cc(NC(=O)C2(c3ccccc3)CC2)cn1 nan
57945012 150404 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1 nan
CHEMBL3899757 150404 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1 nan
57944978 151002 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 8 0 8 2.6 COc1ccc(CCN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1OC nan
CHEMBL3904522 151002 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 8 0 8 2.6 COc1ccc(CCN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1OC nan
53374283 154948 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 0 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccn3)C(C)(C)C2=O)cn1 nan
CHEMBL3935659 154948 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 0 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccn3)C(C)(C)C2=O)cn1 nan
57422497 155312 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 7 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCCc3ccccc3)C2=O)cn1 nan
CHEMBL3938586 155312 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 7 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCCc3ccccc3)C2=O)cn1 nan
57422301 159353 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 337 4 1 7 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3ocnc3c2)cn1 nan
CHEMBL3971823 159353 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 337 4 1 7 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3ocnc3c2)cn1 nan
57422318 151555 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 357 5 2 6 3.4 COc1ccccc1NC(=S)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3909170 151555 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 357 5 2 6 3.4 COc1ccccc1NC(=S)Nc1cnn(Cc2c(C)noc2C)c1 nan
57422275 153941 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 296 4 1 5 2.8 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccc2)cn1 nan
CHEMBL3927851 153941 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 296 4 1 5 2.8 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccc2)cn1 nan
57945005 149547 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 470 8 0 6 4.4 Cc1noc(C)c1Cn1cc(N2CN(Cc3ccccc3)CN(CCc3ccccc3)C2=O)cn1 nan
CHEMBL3892633 149547 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 470 8 0 6 4.4 Cc1noc(C)c1Cn1cc(N2CN(Cc3ccccc3)CN(CCc3ccccc3)C2=O)cn1 nan
53374382 158330 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 5 0 8 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc4c(c3)OCCO4)C(C)(C)C2=O)cn1 nan
CHEMBL3963093 158330 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 5 0 8 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc4c(c3)OCCO4)C(C)(C)C2=O)cn1 nan
57944902 150651 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 371 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCCC3)C2=O)cn1 nan
CHEMBL3901756 150651 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 371 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCCC3)C2=O)cn1 nan
57944994 155073 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1cc(OC)cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3936756 155073 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1cc(OC)cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
53374284 156622 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 8 1 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(OCCO)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3948947 156622 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 8 1 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(OCCO)c3)C(C)(C)C2=O)cn1 nan
53374869 157492 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.4 COCc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
CHEMBL3956109 157492 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.4 COCc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
57422270 158965 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 6 1 5 3.7 Cc1noc(C)c1Cn1cc(NC(=O)CC(C)c2ccccc2)cn1 nan
CHEMBL3968408 158965 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 6 1 5 3.7 Cc1noc(C)c1Cn1cc(NC(=O)CC(C)c2ccccc2)cn1 nan
57422294 159209 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 0 5 3.3 Cc1noc(C)c1Cn1cc(N(C)C(=O)C(C)c2ccccc2)cn1 nan
CHEMBL3970721 159209 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 0 5 3.3 Cc1noc(C)c1Cn1cc(N(C)C(=O)C(C)c2ccccc2)cn1 nan
57422315 160144 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 0 5 3.3 Cc1noc(C)c1Cn1cc(N(C)C(=O)[C@@H](C)c2ccccc2)cn1 nan
CHEMBL3978559 160144 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 0 5 3.3 Cc1noc(C)c1Cn1cc(N(C)C(=O)[C@@H](C)c2ccccc2)cn1 nan
53374775 151399 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 467 8 1 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(OCC(=O)O)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3907992 151399 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 467 8 1 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(OCC(=O)O)c3)C(C)(C)C2=O)cn1 nan
57422300 155757 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 342 5 2 7 2.5 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1O nan
CHEMBL3942213 155757 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 342 5 2 7 2.5 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1O nan
57422319 160606 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 328 4 2 6 2.7 Cc1noc(C)c1Cn1cc(NC(=S)Nc2cccnc2)cn1 nan
CHEMBL3982560 160606 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 328 4 2 6 2.7 Cc1noc(C)c1Cn1cc(NC(=S)Nc2cccnc2)cn1 nan
57422437 151831 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 6 0 7 3.2 CSc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
CHEMBL3911337 151831 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 6 0 7 3.2 CSc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
59524401 151906 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 435 7 0 7 3.2 COCc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C23CC3)c1 nan
CHEMBL3911969 151906 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 435 7 0 7 3.2 COCc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C23CC3)c1 nan
53374871 154940 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 3 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)C3Cc4cc(O)ccc4CN3C2=O)cn1 nan
CHEMBL3935598 154940 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 3 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)C3Cc4cc(O)ccc4CN3C2=O)cn1 nan
53374960 159134 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 1 7 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CCC3)C2=O)cn1 nan
CHEMBL3970005 159134 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 1 7 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CCC3)C2=O)cn1 nan
53374872 167415 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 3 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H]3Cc4ccc(O)cc4CN3C2=O)cn1 nan
CHEMBL4113151 167415 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 3 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H]3Cc4ccc(O)cc4CN3C2=O)cn1 nan
12429 10226 5 None - 0 Human 7.5 pIC50 = 7.5 Binding
HTS assay: To determine the effectiveness of an individual antagonist, taste tests were performed with a T2R8 specific agonist, the compound of interest and a reference bitter blocker. We have previously described a good hT2R8 antagonist that was proven to have taste effect. It was shown to reduce bitterness of coffee by itself and in combination with a Broad spectrum bitter blocker.HTS assay: To determine the effectiveness of an individual antagonist, taste tests were performed with a T2R8 specific agonist, the compound of interest and a reference bitter blocker. We have previously described a good hT2R8 antagonist that was proven to have taste effect. It was shown to reduce bitterness of coffee by itself and in combination with a Broad spectrum bitter blocker.
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O nan
57422431 10226 5 None - 0 Human 7.5 pIC50 = 7.5 Binding
HTS assay: To determine the effectiveness of an individual antagonist, taste tests were performed with a T2R8 specific agonist, the compound of interest and a reference bitter blocker. We have previously described a good hT2R8 antagonist that was proven to have taste effect. It was shown to reduce bitterness of coffee by itself and in combination with a Broad spectrum bitter blocker.HTS assay: To determine the effectiveness of an individual antagonist, taste tests were performed with a T2R8 specific agonist, the compound of interest and a reference bitter blocker. We have previously described a good hT2R8 antagonist that was proven to have taste effect. It was shown to reduce bitterness of coffee by itself and in combination with a Broad spectrum bitter blocker.
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O nan
CHEMBL3924866 10226 5 None - 0 Human 7.5 pIC50 = 7.5 Binding
HTS assay: To determine the effectiveness of an individual antagonist, taste tests were performed with a T2R8 specific agonist, the compound of interest and a reference bitter blocker. We have previously described a good hT2R8 antagonist that was proven to have taste effect. It was shown to reduce bitterness of coffee by itself and in combination with a Broad spectrum bitter blocker.HTS assay: To determine the effectiveness of an individual antagonist, taste tests were performed with a T2R8 specific agonist, the compound of interest and a reference bitter blocker. We have previously described a good hT2R8 antagonist that was proven to have taste effect. It was shown to reduce bitterness of coffee by itself and in combination with a Broad spectrum bitter blocker.
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O nan
57944916 149912 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 8 1.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cc(C)n(C)n3)C2=O)cn1 nan
CHEMBL3895754 149912 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 8 1.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cc(C)n(C)n3)C2=O)cn1 nan
57944931 151894 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 4 1 7 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc3c2OCO3)cn1 nan
CHEMBL3911857 151894 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 4 1 7 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc3c2OCO3)cn1 nan
25206165 154339 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)C(C)c2ccccc2)cn1 nan
CHEMBL3930844 154339 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)C(C)c2ccccc2)cn1 nan
57422454 156829 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 1 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CO)c3)C2=O)cn1 nan
CHEMBL3950626 156829 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 1 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CO)c3)C2=O)cn1 nan
57944992 157118 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 432 4 1 7 3.3 Cc1noc(C)c1Cn1cc(NC(=O)c2cc3c(cc2Br)OCCO3)cn1 nan
CHEMBL3953071 157118 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 432 4 1 7 3.3 Cc1noc(C)c1Cn1cc(NC(=O)c2cc3c(cc2Br)OCCO3)cn1 nan
53375151 159508 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc(OC)c1 nan
CHEMBL3973161 159508 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc(OC)c1 nan
53374471 159617 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1OC nan
CHEMBL3974063 159617 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1OC nan
57422499 159922 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 305 4 2 7 -0.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CO)C2=O)cn1 nan
CHEMBL3976649 159922 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 305 4 2 7 -0.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CO)C2=O)cn1 nan
57422320 159920 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 341 4 2 5 3.7 Cc1ccccc1NC(=S)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3976607 159920 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 341 4 2 5 3.7 Cc1ccccc1NC(=S)Nc1cnn(Cc2c(C)noc2C)c1 nan
57422422 153157 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 408 6 1 9 0.8 Cc1noc(C)c1Cn1cc(-n2c(=O)[nH]c(=O)n(CCc3ccccc3)c2=O)cn1 nan
CHEMBL3921539 153157 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 408 6 1 9 0.8 Cc1noc(C)c1Cn1cc(-n2c(=O)[nH]c(=O)n(CCc3ccccc3)c2=O)cn1 nan
57422288 156753 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 314 4 1 6 3.0 Cc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c(C)o1 nan
CHEMBL3949977 156753 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 314 4 1 6 3.0 Cc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c(C)o1 nan
57422483 156186 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 7 0 10 1.3 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(CCOc3ccccc3)c2=O)cn1 nan
CHEMBL3945679 156186 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 7 0 10 1.3 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(CCOc3ccccc3)c2=O)cn1 nan
53374285 153127 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 6 0 7 3.4 COc1cccc(F)c1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3921282 153127 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 6 0 7 3.4 COc1cccc(F)c1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
53374472 156649 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(F)c3F)C(C)(C)C2=O)cn1 nan
CHEMBL3949113 156649 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(F)c3F)C(C)(C)C2=O)cn1 nan
57944924 157702 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 357 5 1 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC3CCCC3)C2=O)cn1 nan
CHEMBL3957721 157702 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 357 5 1 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC3CCCC3)C2=O)cn1 nan
57422299 160297 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 2 7 2.4 COc1ccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1O nan
CHEMBL3979892 160297 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 2 7 2.4 COc1ccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1O nan
57422289 154742 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 4 1 6 2.7 Cc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)o1 nan
CHEMBL3933979 154742 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 4 1 6 2.7 Cc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)o1 nan
53374286 153807 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 5 0 6 3.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3)C(C)(C)C2=O)cn1 nan
CHEMBL3926724 153807 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 5 0 6 3.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3)C(C)(C)C2=O)cn1 nan
25206165 154339 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)C(C)c2ccccc2)cn1 nan
CHEMBL3930844 154339 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)C(C)c2ccccc2)cn1 nan
53374377 150703 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3ccc(F)cc3)C(C)(C)C2=O)cn1 nan
CHEMBL3902167 150703 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3ccc(F)cc3)C(C)(C)C2=O)cn1 nan
57422474 153805 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 2 7 1.9 Cc1noc(C)c1Cn1cc(N2C(=O)NC(Cc3ccc(O)cc3)C2=O)cn1 nan
CHEMBL3926716 153805 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 2 7 1.9 Cc1noc(C)c1Cn1cc(N2C(=O)NC(Cc3ccc(O)cc3)C2=O)cn1 nan
53374473 157703 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 6 0 7 3.4 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1F nan
CHEMBL3957733 157703 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 6 0 7 3.4 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1F nan
57944928 156511 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 363 4 1 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)N/C(=C\c3ccccc3)C2=O)cn1 nan
CHEMBL3948003 156511 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 363 4 1 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)N/C(=C\c3ccccc3)C2=O)cn1 nan
57422285 159588 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 299 4 1 6 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2cccn2C)cn1 nan
CHEMBL3973789 159588 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 299 4 1 6 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2cccn2C)cn1 nan
57422283 159417 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.9 COC(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
CHEMBL3972329 159417 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.9 COC(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
12429 10226 5 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O nan
57422431 10226 5 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O nan
CHEMBL3924866 10226 5 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O nan
53374079 158114 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 7 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCOc3ccccc3)C(C)(C)C2=O)cn1 nan
CHEMBL3961048 158114 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 7 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCOc3ccccc3)C(C)(C)C2=O)cn1 nan
53374772 156351 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 1 7 2.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(CO)cc3)C(C)(C)C2=O)cn1 nan
CHEMBL3946823 156351 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 1 7 2.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(CO)cc3)C(C)(C)C2=O)cn1 nan
57944938 167384 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)[C@H](C)c2ccccc2)cn1 nan
CHEMBL4112920 167384 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)[C@H](C)c2ccccc2)cn1 nan
57945014 160319 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 368 5 1 5 3.9 Cc1noc(C)c1Cn1cc(NC(=O)CC2C3CC4CC(C3)CC2C4)cn1 nan
CHEMBL3980031 160319 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 368 5 1 5 3.9 Cc1noc(C)c1Cn1cc(NC(=O)CC2C3CC4CC(C3)CC2C4)cn1 nan
57945016 158027 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 362 6 1 7 2.3 COc1ccccc1S(=O)(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3960207 158027 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 362 6 1 7 2.3 COc1ccccc1S(=O)(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
57945020 151502 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1ccccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3908801 151502 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1ccccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
57944989 155019 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 372 6 2 8 2.5 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(OC)c1O nan
CHEMBL3936248 155019 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 372 6 2 8 2.5 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(OC)c1O nan
25206166 155464 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3939850 155464 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
53375155 149527 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(C#N)cc3)C(C)(C)C2=O)cn1 nan
CHEMBL3892490 149527 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(C#N)cc3)C(C)(C)C2=O)cn1 nan
57944913 150046 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 7 0 7 2.6 COc1ccc(CCN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1 nan
CHEMBL3896760 150046 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 7 0 7 2.6 COc1ccc(CCN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1 nan
53375054 152388 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 6 2 8 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](CO)N(Cc3cccc(O)c3)C2=O)cn1 nan
CHEMBL3915586 152388 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 6 2 8 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](CO)N(Cc3cccc(O)c3)C2=O)cn1 nan
57944914 155606 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 0 8 2.1 Cc1noc(C)c1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
CHEMBL3941028 155606 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 0 8 2.1 Cc1noc(C)c1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
57422495 156560 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 6 0 9 1.7 CCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
CHEMBL3948447 156560 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 6 0 9 1.7 CCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
57944907 149441 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 4 1 7 2.6 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCCO3)cn1 nan
CHEMBL3891877 149441 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 4 1 7 2.6 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCCO3)cn1 nan
57944906 149771 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 6 0 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3[S+](C)[O-])C2=O)cn1 nan
CHEMBL3894555 149771 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 6 0 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3[S+](C)[O-])C2=O)cn1 nan
57422457 150298 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 369 5 0 8 1.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccn(C)n3)C2=O)cn1 nan
CHEMBL3898870 150298 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 369 5 0 8 1.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccn(C)n3)C2=O)cn1 nan
53374474 154226 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 443 6 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3cc(F)cc(F)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3930146 154226 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 443 6 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3cc(F)cc(F)c3)C(C)(C)C2=O)cn1 nan
25206166 155464 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3939850 155464 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57944946 150999 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)[C@@H](C)c2ccccc2)cn1 nan
CHEMBL3904507 150999 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)[C@@H](C)c2ccccc2)cn1 nan
57944999 154543 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 1 7 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccc(O)cc3)C2=O)cn1 nan
CHEMBL3932517 154543 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 1 7 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccc(O)cc3)C2=O)cn1 nan
57944920 158279 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 8 0 9 2.5 CCCCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
CHEMBL3962515 158279 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 8 0 9 2.5 CCCCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
57944910 153921 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 5 1 6 2.3 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccco2)cn1 nan
CHEMBL3927722 153921 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 5 1 6 2.3 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccco2)cn1 nan
53374475 155727 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 5 0 8 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccn(C)n3)C(C)(C)C2=O)cn1 nan
CHEMBL3941993 155727 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 5 0 8 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccn(C)n3)C(C)(C)C2=O)cn1 nan
87266941 156847 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 8 2.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3OC=O)C(C)(C)C2=O)cn1 nan
CHEMBL3950742 156847 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 8 2.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3OC=O)C(C)(C)C2=O)cn1 nan
53374673 152184 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 5 1 8 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)n3)C(C)(C)C2=O)cn1 nan
CHEMBL3914005 152184 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 5 1 8 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)n3)C(C)(C)C2=O)cn1 nan
57450323 150785 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccncc2)cn1 nan
CHEMBL3902844 150785 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccncc2)cn1 nan
57422265 150790 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 386 7 2 8 2.4 COc1cc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(OC)c1O nan
CHEMBL3902860 150790 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 386 7 2 8 2.4 COc1cc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(OC)c1O nan
53374476 158427 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(C(=O)O)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3963907 158427 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(C(=O)O)c3)C(C)(C)C2=O)cn1 nan
57422298 156448 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 2 7 2.4 COc1cc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)ccc1O nan
CHEMBL3947524 156448 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 2 7 2.4 COc1cc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)ccc1O nan
57422274 156183 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 342 5 2 7 2.5 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)ccc1O nan
CHEMBL3945644 156183 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 342 5 2 7 2.5 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)ccc1O nan
57944900 152818 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 6 1 5 3.1 Cc1noc(C)c1Cn1cc(NC(=O)CCc2ccccc2)cn1 nan
CHEMBL3918801 152818 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 6 1 5 3.1 Cc1noc(C)c1Cn1cc(NC(=O)CCc2ccccc2)cn1 nan
12430 10227 3 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C nan
53374958 10227 3 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C nan
CHEMBL3907822 10227 3 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C nan
53375155 149527 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(C#N)cc3)C(C)(C)C2=O)cn1 nan
CHEMBL3892490 149527 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(C#N)cc3)C(C)(C)C2=O)cn1 nan
57422452 151456 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(F)cc3)C2=O)cn1 nan
CHEMBL3908407 151456 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(F)cc3)C2=O)cn1 nan
57422453 160260 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(C#N)cc3)C2=O)cn1 nan
CHEMBL3979603 160260 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(C#N)cc3)C2=O)cn1 nan
57422441 150416 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3C#N)C2=O)cn1 nan
CHEMBL3899833 150416 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3C#N)C2=O)cn1 nan
57944932 159264 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 6 1 5 3.7 CCC(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
CHEMBL3971132 159264 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 6 1 5 3.7 CCC(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
57422297 166910 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.9 CO[C@@H](C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
CHEMBL4108961 166910 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.9 CO[C@@H](C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
57422475 156647 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 5 3 8 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)NC(Cc3ccc(O)c(O)c3)C2=O)cn1 nan
CHEMBL3949101 156647 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 5 3 8 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)NC(Cc3ccc(O)c(O)c3)C2=O)cn1 nan
57945006 156250 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 386 6 1 5 4.3 Cc1noc(C)c1Cn1cc(NC(=O)C(c2ccccc2)c2ccccc2)cn1 nan
CHEMBL3946184 156250 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 386 6 1 5 4.3 Cc1noc(C)c1Cn1cc(NC(=O)C(c2ccccc2)c2ccccc2)cn1 nan
3688271 159731 1 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 387 6 2 7 3.4 COc1ccc(OC)c(NC(=S)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3975082 159731 1 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 387 6 2 7 3.4 COc1ccc(OC)c(NC(=S)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57422266 151446 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 310 5 1 5 2.7 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccccc2)cn1 nan
CHEMBL3908324 151446 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 310 5 1 5 2.7 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccccc2)cn1 nan
53374674 152892 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(F)cc3F)C(C)(C)C2=O)cn1 nan
CHEMBL3919495 152892 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(F)cc3F)C(C)(C)C2=O)cn1 nan
57945007 155658 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 1 5 3.5 Cc1noc(C)c1Cn1cc(NC(=O)C(C)(C)c2ccccc2)cn1 nan
CHEMBL3941536 155658 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 1 5 3.5 Cc1noc(C)c1Cn1cc(NC(=O)C(C)(C)c2ccccc2)cn1 nan
53374572 157481 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 481 8 0 9 2.8 COC(=O)COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3956008 157481 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 481 8 0 9 2.8 COC(=O)COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
53374675 154006 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 0 7 3.6 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1C nan
CHEMBL3928400 154006 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 0 7 3.6 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1C nan
57945017 153122 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1OC nan
CHEMBL3921262 153122 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1OC nan
53374573 158810 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 347 5 1 7 1.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCO)C(C)(C)C2=O)cn1 nan
CHEMBL3967116 158810 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 347 5 1 7 1.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCO)C(C)(C)C2=O)cn1 nan
57944963 151817 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccn2)cn1 nan
CHEMBL3911209 151817 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccn2)cn1 nan
57944985 152045 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 310 4 1 5 3.1 Cc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3912902 152045 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 310 4 1 5 3.1 Cc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57422271 158385 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 285 4 2 5 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc[nH]2)cn1 nan
CHEMBL3963524 158385 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 285 4 2 5 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc[nH]2)cn1 nan
57422470 153873 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 289 3 0 6 0.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(C)C2=O)cn1 nan
CHEMBL3927302 153873 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 289 3 0 6 0.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(C)C2=O)cn1 nan
53374676 155593 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 7 0 6 3.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCCc3ccccc3)C(C)(C)C2=O)cn1 nan
CHEMBL3940950 155593 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 7 0 6 3.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCCc3ccccc3)C(C)(C)C2=O)cn1 nan
57422418 161082 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 366 5 1 6 2.5 Cc1noc(C)c1Cn1cc(N2CNCN(Cc3ccccc3)C2=O)cn1 nan
CHEMBL3986643 161082 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 366 5 1 6 2.5 Cc1noc(C)c1Cn1cc(N2CNCN(Cc3ccccc3)C2=O)cn1 nan
53373742 150359 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 361 6 0 7 1.7 COCCN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3899299 150359 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 361 6 0 7 1.7 COCCN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
57422449 150530 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(F)c3)C2=O)cn1 nan
CHEMBL3900806 150530 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(F)c3)C2=O)cn1 nan
57422426 152877 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 7 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCOc3ccccc3)C2=O)cn1 nan
CHEMBL3919358 152877 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 7 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCOc3ccccc3)C2=O)cn1 nan
57944971 153739 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 424 8 0 10 1.3 COCCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
CHEMBL3926125 153739 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 424 8 0 10 1.3 COCCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
57944949 154489 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 6 0 6 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3cccc(F)c3)C2=O)cn1 nan
CHEMBL3932036 154489 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 6 0 6 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3cccc(F)c3)C2=O)cn1 nan
57422451 154592 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.8 Cc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1 nan
CHEMBL3932834 154592 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.8 Cc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1 nan
57422433 156521 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(O)cc3)C2=O)cn1 nan
CHEMBL3948082 156521 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(O)cc3)C2=O)cn1 nan
57944911 157189 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 408 7 0 9 2.1 CCCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
CHEMBL3953765 157189 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 408 7 0 9 2.1 CCCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
57422456 157469 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 7 0 8 2.5 COc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1OC nan
CHEMBL3955923 157469 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 7 0 8 2.5 COc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1OC nan
57422440 160269 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 0 7 2.5 COc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
CHEMBL3979660 160269 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 0 7 2.5 COc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
53374962 160471 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 6 1 8 3.0 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1O nan
CHEMBL3981387 160471 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 6 1 8 3.0 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1O nan
57944954 149643 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 4 1 7 2.6 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc3c2OCCO3)cn1 nan
CHEMBL3893359 149643 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 4 1 7 2.6 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc3c2OCCO3)cn1 nan
57422314 151337 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 337 4 2 7 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3[nH]nnc3c2)cn1 nan
CHEMBL3907422 151337 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 337 4 2 7 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3[nH]nnc3c2)cn1 nan
57422485 153522 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 304 3 0 9 -0.3 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(C)c2=O)cn1 nan
CHEMBL3924285 153522 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 304 3 0 9 -0.3 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(C)c2=O)cn1 nan
57422312 160080 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 4 2 6 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3[nH]cnc3c2)cn1 nan
CHEMBL3977982 160080 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 4 2 6 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3[nH]cnc3c2)cn1 nan
57945019 149248 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1OC nan
CHEMBL3890306 149248 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1OC nan
53375156 157317 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 1 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C(C)C)N(Cc3cccc(O)c3)C2=O)cn1 nan
CHEMBL3954679 157317 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 1 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C(C)C)N(Cc3cccc(O)c3)C2=O)cn1 nan
57422472 151928 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 366 5 0 7 1.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccn3)C2=O)cn1 nan
CHEMBL3912134 151928 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 366 5 0 7 1.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccn3)C2=O)cn1 nan
53375052 149646 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 435 5 1 7 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CCCC3)C2=O)cn1 nan
CHEMBL3893402 149646 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 435 5 1 7 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CCCC3)C2=O)cn1 nan
57422432 150049 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3O)C2=O)cn1 nan
CHEMBL3896824 150049 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3O)C2=O)cn1 nan
53373963 150069 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3O)C(C)(C)C2=O)cn1 nan
CHEMBL3897007 150069 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3O)C(C)(C)C2=O)cn1 nan
57422427 150144 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 0 7 2.5 COc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3897715 150144 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 0 7 2.5 COc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
53373845 153159 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(O)cc3)C(C)(C)C2=O)cn1 nan
CHEMBL3921566 153159 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(O)cc3)C(C)(C)C2=O)cn1 nan
57422435 153194 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 9 0 8 2.5 COCCOc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3921846 153194 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 9 0 8 2.5 COCCOc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
57944936 157893 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 0 8 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc4c(c3)OCO4)C2=O)cn1 nan
CHEMBL3959229 157893 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 0 8 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc4c(c3)OCO4)C2=O)cn1 nan
57422450 158802 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 0 7 2.5 COc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1 nan
CHEMBL3967038 158802 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 0 7 2.5 COc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1 nan
57422445 160692 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 6 0 8 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3[N+](=O)[O-])C2=O)cn1 nan
CHEMBL3983263 160692 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 6 0 8 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3[N+](=O)[O-])C2=O)cn1 nan
57422326 149295 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 5 1 8 2.5 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc2c1OCO2 nan
CHEMBL3890651 149295 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 5 1 8 2.5 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc2c1OCO2 nan
57422273 149746 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 322 5 1 5 3.2 Cc1noc(C)c1Cn1cc(NC(=O)/C=C/c2ccccc2)cn1 nan
CHEMBL3894331 149746 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 322 5 1 5 3.2 Cc1noc(C)c1Cn1cc(NC(=O)/C=C/c2ccccc2)cn1 nan
57422311 150038 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 351 4 1 7 3.2 Cc1nc2ccc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)cc2o1 nan
CHEMBL3896707 150038 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 351 4 1 7 3.2 Cc1nc2ccc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)cc2o1 nan
57422330 152841 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 1 8 2.6 COc1cc2c(cc1C(=O)Nc1cnn(Cc3c(C)noc3C)c1)OCCO2 nan
CHEMBL3919038 152841 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 1 8 2.6 COc1cc2c(cc1C(=O)Nc1cnn(Cc3c(C)noc3C)c1)OCCO2 nan
57422328 155930 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 1 8 2.6 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc2c1OCCO2 nan
CHEMBL3943473 155930 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 1 8 2.6 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc2c1OCCO2 nan
57422329 159869 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 1 8 2.9 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc2c1OC(C)O2 nan
CHEMBL3976167 159869 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 1 8 2.9 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc2c1OC(C)O2 nan
57944953 154488 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3)C2=O)cn1 nan
CHEMBL3932026 154488 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3)C2=O)cn1 nan
53374677 156718 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 467 9 0 8 3.3 COCCOc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3949716 156718 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 467 9 0 8 3.3 COCCOc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
57422487 152357 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 396 6 1 8 1.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CO)n3)C2=O)cn1 nan
CHEMBL3915301 152357 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 396 6 1 8 1.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CO)n3)C2=O)cn1 nan
57422276 153203 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 374 5 1 7 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(S(C)(=O)=O)c2)cn1 nan
CHEMBL3921888 153203 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 374 5 1 7 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(S(C)(=O)=O)c2)cn1 nan
57422284 161033 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 299 4 2 5 2.4 Cc1c[nH]c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3986303 161033 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 299 4 2 5 2.4 Cc1c[nH]c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57422272 153263 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 316 5 1 5 3.4 Cc1noc(C)c1Cn1cc(NC(=O)CC2CCCCC2)cn1 nan
CHEMBL3922360 153263 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 316 5 1 5 3.4 Cc1noc(C)c1Cn1cc(NC(=O)CC2CCCCC2)cn1 nan
53374574 151674 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.6 Cc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
CHEMBL3910086 151674 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.6 Cc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
57422467 158864 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 408 6 2 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC(=O)Nc3ccccc3)C2=O)cn1 nan
CHEMBL3967574 158864 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 408 6 2 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC(=O)Nc3ccccc3)C2=O)cn1 nan
57944898 157832 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 7 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)NC(COCc3ccccc3)C2=O)cn1 nan
CHEMBL3958764 157832 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 7 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)NC(COCc3ccccc3)C2=O)cn1 nan
57422321 156425 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 352 4 2 6 3.2 Cc1noc(C)c1Cn1cc(NC(=S)Nc2cccc(C#N)c2)cn1 nan
CHEMBL3947337 156425 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 352 4 2 6 3.2 Cc1noc(C)c1Cn1cc(NC(=S)Nc2cccc(C#N)c2)cn1 nan
57422286 160887 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 4 1 6 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2ccoc2C)cn1 nan
CHEMBL3985065 160887 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 4 1 6 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2ccoc2C)cn1 nan
53373846 153618 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 424 6 0 8 2.7 COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)n1 nan
CHEMBL3925053 153618 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 424 6 0 8 2.7 COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)n1 nan
53374080 154397 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1OC nan
CHEMBL3931283 154397 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1OC nan
53373960 154584 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 7 3.3 COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3932779 154584 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 7 3.3 COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
59524420 154906 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 6 3.8 [C-]#[N+]c1ccccc1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3935390 154906 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 6 3.8 [C-]#[N+]c1ccccc1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
53373959 157837 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 6 3.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(F)cc3)C(C)(C)C2=O)cn1 nan
CHEMBL3958788 157837 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 6 3.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(F)cc3)C(C)(C)C2=O)cn1 nan
53373743 158532 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 7 3.3 COc1ccccc1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3964716 158532 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 7 3.3 COc1ccccc1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
57422443 158595 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3F)C2=O)cn1 nan
CHEMBL3965292 158595 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3F)C2=O)cn1 nan
53375153 160918 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 412 5 0 8 2.9 Cc1noc(C)c1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3985403 160918 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 412 5 0 8 2.9 Cc1noc(C)c1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
57422309 149765 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 7 3.5 CCc1nc2cc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)ccc2o1 nan
CHEMBL3894433 149765 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 7 3.5 CCc1nc2cc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)ccc2o1 nan
57422278 150355 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 7 1 7 2.7 COc1cccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1OC nan
CHEMBL3899263 150355 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 7 1 7 2.7 COc1cccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1OC nan
57422471 150943 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 317 3 0 6 1.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(C)C(C)(C)C2=O)cn1 nan
CHEMBL3904024 150943 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 317 3 0 6 1.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(C)C(C)(C)C2=O)cn1 nan
57422310 158673 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 348 4 1 7 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3nccnc3c2)cn1 nan
CHEMBL3965845 158673 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 348 4 1 7 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3nccnc3c2)cn1 nan
57422486 160888 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 456 7 0 9 2.7 Cc1noc(C)c1Cn1cc(-n2c(=O)n(Cc3ccccc3)n(Cc3ccccc3)c2=O)cn1 nan
CHEMBL3985068 160888 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 456 7 0 9 2.7 Cc1noc(C)c1Cn1cc(-n2c(=O)n(Cc3ccccc3)n(Cc3ccccc3)c2=O)cn1 nan
53374678 155654 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 0 6 3.7 Cc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1F nan
CHEMBL3941508 155654 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 0 6 3.7 Cc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1F nan
57422295 149951 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 5 0 5 3.2 Cc1noc(C)c1Cn1cc(N(C)C(=O)C2(c3ccccc3)CC2)cn1 nan
CHEMBL3896073 149951 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 5 0 5 3.2 Cc1noc(C)c1Cn1cc(N(C)C(=O)C2(c3ccccc3)CC2)cn1 nan
57944991 149303 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 7 1 5 3.5 Cc1noc(C)c1Cn1cc(NC(=O)CCCc2ccccc2)cn1 nan
CHEMBL3890731 149303 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 7 1 5 3.5 Cc1noc(C)c1Cn1cc(NC(=O)CCCc2ccccc2)cn1 nan
3845786 156341 1 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 368 6 1 7 2.8 CC(=O)OC(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
CHEMBL3946779 156341 1 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 368 6 1 7 2.8 CC(=O)OC(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
57945004 160720 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 5 1 6 2.5 Cc1noc(C)c1Cn1cc(NS(=O)(=O)c2ccccc2F)cn1 nan
CHEMBL3983515 160720 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 5 1 6 2.5 Cc1noc(C)c1Cn1cc(NS(=O)(=O)c2ccccc2F)cn1 nan
57422296 157506 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.9 CO[C@H](C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
CHEMBL3956215 157506 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.9 CO[C@H](C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
57422290 150847 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 5 1 6 2.3 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccoc2)cn1 nan
CHEMBL3903256 150847 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 5 1 6 2.3 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccoc2)cn1 nan
57422292 153783 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 206 3 1 5 1.6 CNc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3926546 153783 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 206 3 1 5 1.6 CNc1cnn(Cc2c(C)noc2C)c1 nan
57422292 153783 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 206 3 1 5 1.6 CNc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3926546 153783 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 206 3 1 5 1.6 CNc1cnn(Cc2c(C)noc2C)c1 nan
57945002 154396 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 4 1 5 3.7 Cc1noc(C)c1Cn1cc(NC(=O)C23CC4CC(CC(C4)C2)C3)cn1 nan
CHEMBL3931276 154396 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 4 1 5 3.7 Cc1noc(C)c1Cn1cc(NC(=O)C23CC4CC(CC(C4)C2)C3)cn1 nan
53374185 150928 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(C#N)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3903912 150928 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(C#N)c3)C(C)(C)C2=O)cn1 nan
57422428 154108 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 8 2.3 COC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3929225 154108 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 8 2.3 COC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
57944953 154488 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3)C2=O)cn1 nan
CHEMBL3932026 154488 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3)C2=O)cn1 nan
57422498 156431 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 494 7 1 8 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CNC(=O)OC(C)(C)C)c3)C2=O)cn1 nan
CHEMBL3947381 156431 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 494 7 1 8 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CNC(=O)OC(C)(C)C)c3)C2=O)cn1 nan
57422308 160032 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 330 4 1 5 3.4 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(Cl)c2)cn1 nan
CHEMBL3977534 160032 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 330 4 1 5 3.4 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(Cl)c2)cn1 nan
57944966 150392 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 5 1 6 3.1 COc1cccc(C(=O)Nc2cn(Cc3c(C)noc3C)nc2C)c1 nan
CHEMBL3899624 150392 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 5 1 6 3.1 COc1cccc(C(=O)Nc2cn(Cc3c(C)noc3C)nc2C)c1 nan
57422282 153798 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 2 6 2.3 Cc1noc(C)c1Cn1cc(NC(=O)C(CO)c2ccccc2)cn1 nan
CHEMBL3926634 153798 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 2 6 2.3 Cc1noc(C)c1Cn1cc(NC(=O)C(CO)c2ccccc2)cn1 nan
57422279 153871 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 7 1 7 2.7 COc1cc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(OC)c1 nan
CHEMBL3927291 153871 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 7 1 7 2.7 COc1cc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(OC)c1 nan
57944935 157208 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 371 5 1 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC3CCCCC3)C2=O)cn1 nan
CHEMBL3953908 157208 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 371 5 1 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC3CCCCC3)C2=O)cn1 nan
57422277 160630 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 342 5 2 7 2.5 COc1ccc(O)c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3982791 160630 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 342 5 2 7 2.5 COc1ccc(O)c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57422280 150527 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.7 COc1ccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1 nan
CHEMBL3900772 150527 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.7 COc1ccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1 nan